ОАО ИНТЕГРАЛ


Выпуск  № 17(1019) от 16 октября 2014 года


Мировой рынок


IFA 2014: 14 нм и Intel Core M


За последние несколько лет рынок компьютеров сильно изменился. Intel собирается изменить его еще больше: переход на 14-нм техпроцесс позволит избавить устройства от вентиляторов, сделать их тоньше, легче и автономнее. Добиться этого Intel рассчитывает с помощью представленных в ходе IFA 2014 процессоров Intel Core M.
Мы нечасто пишем репортажи с крупных выставок про Intel, однако это не значит, что американский гигант совсем не принимает в них участия. Просто обычно на стенде Intel демонстрируются продукты партнеров, которые были представлены на конференциях до этого, – а больше особенно ничего и не происходит. Но на сей раз представители Intel показывали то, что другие показать не могут в принципе: кремниевые пластины, произведенные по 14-нм техпроцессу, и процессоры Intel Core M – маленькие частички этих пластин.
Адам Кинг (Adam King), директор группы продуктового маркетинга по ноутбукам, вышел к аудитории с пластиной в руках – это, пожалуй, максимально наглядная демонстрация того, что 14-нм техпроцесс вообще существует. Адам – от лица Intel – утверждает, что все уже отлажено и готово для массового производства 14-нм чипов и что устройства на базе этих чипов мы увидим буквально через несколько недель. Говорилось это все с успокоительными интонациями: дескать, не тревожьтесь, все идет по плану, пускай даже от старого плана мы отстали, 14 нм будут – и будут в достаточных количествах. Видимо, Intel порядком устала от шумихи в прессе по поводу неудач и отсрочек с переходом на новую технологию.
С точки зрения архитектуры отдельного транзистора 14-нм техпроцесс Intel представляет собой эволюционное развитие идей, заложенных в дизайне 22-нм транзисторов. Здесь также используются трехмерные транзисторы Tri-gate, но уже второго поколения. От первого оно отличается четырьмя основными моментами. Во-первых, уменьшено расстояние между диэлектрическими ребрами, проходящими перпендикулярно металлическому затвору (fin pitch). Во-вторых, количество этих ребер сокращено с трех до двух. В-третьих, высота барьеров стала больше. Ну и в-четвертых, само собой разумеется, 14-нм транзистор в абсолютном масштабе значительно меньше 22-нм транзистора. 

Зачем это все нужно? Масштабы во многом говорят сами за себя. Расстояние между диэлектрическими ребрами уменьшилось с 60 до 42 нм, между затворами (gate pitch) – с 90 до 70 нм, между соединениями (interconnect pitch) – с 80 до 52 нм. Соответственно, на кристалл той же площади теперь помещается куда больше транзисторов – их плотность ощутимо выросла. Увеличение высоты барьеров с 34 до 42 нм позволило повысить мощность управляющего тока и производительность транзистора. Ну а уменьшение числа барьеров с трех до двух дало опять-таки большую плотность размещения и снижение емкостного сопротивления.

Для сравнения: если в рамках 22-нм техпроцесса площадь ячейки памяти SRAM составляла примерно 0,108 мкм2, то 14-нм техпроцесс позволил сократить это значение где-то до 0,059 мкм2 – почти в два раза. В качестве второго примера, немного забегая вперед, приведем соотношение размеров чипов Haswell и Broadwell: 22-нм мобильный процессор Haswell имеет площадь кристалла 131 мм2, в то время как 14-нм Broadwell довольствуется 82 мм2. При этом Haswell насчитывает около 1 млрд транзисторов, а Broadwell – порядка 1,3 млрд.

Intel также удалось ощутимо снизить токи утечки, что позволяет в рамках одного и того же техпроцесса производить совершенно разные чипы: от мобильных (со сравнительно невысокой производительностью и минимальными токами утечки – и, соответственно, низким энергопотреблением) до серверных (с заметно более высокой производительностью, чем у предыдущего поколения, при неизменном уровне токов утечки).

Производительность на ватт Intel считает самым важным параметром своих чипов. Последние несколько лет эта величина возрастает примерно в 1,6 раза при переходе на каждый новый техпроцесс, но при переезде на 14 нм она увеличилась сразу в 2 раза. Intel называет это самой лучшей оптимизацией за всю свою историю – неудивительно, что на такой серьезный прорыв потребовалось больше времени, чем обычно.
Площадь одного логического элемента при переходе между техпроцессами уменьшается примерно в 2 раза. У остальных производителей чипов (для примера на слайдах приводятся IBM и TSMC) дела до недавнего времени в целом обстояли так же, однако они умудрялись удерживать абсолютное значение площади логического элемента на более низком уровне – пускай и с отставанием от Intel на два года. Сейчас в Intel уверены, что держать те же темпы и дальше конкуренты не смогут: тогда как Intel представляет уже второе, оптимизированное (в том числе в плане площади) поколение трехмерных транзисторов FinFET, остальные только-только начинают на них переходить – и это должно стать сдерживающим фактором в их развитии. По крайней мере к такому суждению сотрудники Intel пришли на основании публикаций конкурентов.

В то время как производительность каждого транзистора растет, его удельная стоимость падает. Это логично: площадь транзистора от поколения к поколению уменьшается быстро, стоимость квадратного миллиметра чипа из-за усложнения технологии растет, но медленнее. Соответственно, средняя цена транзистора снижается. Это позволит сохранить цены на процессоры примерно на прежнем уровне – при росте количества транзисторов в них. И пусть даже в случае 14-нм техпроцесса цена квадратного миллиметра скакнула ощутимо выше, чем раньше, плотность их размещения выросла еще более ощутимо.

На данный момент 14-нм техпроцесс уже введен на двух фабриках Intel в США – в штате Орегон и в штате Аризона, а в 2015 г.на новую технологию будет переведена третья фабрика – в Ирландии. По расчетам Intel, полностью удовлетворить спрос на 14-нм чипы компания сможет к I кварталу 2015 г. И одними из первых продуктов, созданных по новой технологии, станут процессоры Intel Core M семейства Broadwell, предназначенные для мобильных компьютеров.

Intel Core M: война с вентиляторами
В Intel считают, что в среднем пользователи меняют свои компьютеры где-то раз в 4 года. И предлагают оглянуться назад и посмотреть, что в них за последние 4 года изменилось. А изменилось действительно многое – 4 года назад среднестатистический ноутбук представлял собой здоровенный кирпич весом под 3 кг, с оптическим приводом и временем автономной работы около 3–4 ч. С TN-матрицей, разрешение которой не превышало 1366х768 точек, и толщиной добрых 4 сантиметра. Сейчас же оптические приводы почти исчезли, масса снизилась, а время жизни от батареи выросло до 6-8 часов. Ноутбуки на Haswell при низкой нагрузке и вовсе способны прожить от батареи 15 часов, а то и больше – полноценное тестирование аккумуляторов в лаборатории 3DNews теперь занимает порядка недели. Разрешение выросло до Full HD, а средняя толщина корпуса снизилась где-то до 20 мм.

Intel Core M во всей своей красе
Широкое распространение получили всевозможные трансформеры, планшеты на Windows с пристегивающейся клавиатурой и прочие устройства, которые несколько лет назад было не так-то просто даже представить. Продажи подобного рода компьютеров «два в одном» за последний год выросли в 3 раза, различных устройств представлено более 70 – Intel считает, что рынок вернулся к здоровому состоянию: он развивается, производители стараются придумать что-то новое (то, что в целом рынок ПК падает, Intel в своем докладе не упоминает).
Однако большинство таких устройств до сих пор оснащается вентилятором – пусть даже большую часть времени он вращается на едва слышимых оборотах. От вентилятора есть и другие проблемы: он занимает место внутри корпуса, его механические части подвержены поломкам, в самих устройствах приходится делать вентиляционные отверстия. В общем, с выходом Core M Intel решила от вентиляторов отказаться. Совсем. А параллельно сделать устройства на его основе тоньше, мощнее и автономнее.
Как этого добиться? В первую очередь благодаря снижению TDP процессоров и их размеров, а также размеров необходимой им электрической обвязки. Адам привел достаточно наглядный пример. Для начала он продемонстрировал материнскую плату от Apple MacBook Air последнего поколения – хорошо оптимизированную и действительно небольшую. Создать настолько компактную плату – настоящее компьютерное искусство. А потом достал плату в два раза меньшего размера – это референсный дизайн Intel, на котором разместилось все то же самое, только на базе Broadwell. Такая материнская плата занимает меньше места в корпусе, освобождая пространство для батареи. То есть, даже если сделать корпус устройства тоньше, время жизни от батареи останется достаточно высоким.

Все познается в сравнении: сверху плата MacBook Air, снизу референсный дизайн Intel на Core M
Отдельно стоит отметить, что плата с напаянными на ней чипами стала еще и в два раза тоньше, что позволяет делать устройства меньшей толщины. Пример – новый Lenovo ThinkPad Helix 2: тонкий, легкий, без вентилятора. Если в 2010 г. процессоры для ультрамобильных ПК потребляли примерно 18 Вт, то в конце 2014-го будут требовать не больше 6 Вт. Собственно, сам процессор в сборе тоже стал примерно в два раза меньше – и в два раза тоньше.

У Intel есть специальная диаграмма, иллюстрирующая процесс подбора оптимальных характеристик чипа с точки зрения его пригодности для построения планшетов той или иной толщины и типоразмера. Верхний предел даже для самых толстых «тринашек» на этой диаграмме – 6 Вт. Напомним, что столько потребляют, например, 8-ядерные ARM-процессоры Samsung Exynos. Ну а минимум – и вовсе 3 Вт: еще недавно даже «Атомы» были намного более прожорливыми. А здесь – полноценная архитектура Core.

Из чего состоит Core M
Как мы уже говорили, процессоры Intel Core M носят кодовое имя Broadwell и в интеловской схеме «Тик-так» должны представлять собой «тик»: переход на новый техпроцесс без существенных изменений в архитектуре. Однако изменения все же есть, и, пожалуй, весьма существенные. 

Материнская плата выглядит игрушечной
Как и в наиболее компактных процессорах поколения Haswell, в Core M в одном корпусе совмещены две микросхемы – непосредственно процессор (в который встроены графика и контроллер памяти), а также южный мост. Последний, помимо всяких привычных вещей, включает теперь аудиокодек и модуль Wi-Fi. Увы, до той степени интегрированности, которая типична для нынешних ARM-процессоров, решения на «взрослой» версии архитектуры x86 еще не дошли: вместо полноценной системы-на-чипе пока приходится довольствоваться системой-на-двух-чипах.
Касательно изменений в процессорных ядрах информации известно пока что не слишком многое, надо понимать, что речь идёт о «тике», а, значит, ничего революционного ждать не надо. Впрочем, если вспомнить предыдущие шаги, сопряжённые со сменой технологического процесса, например, Westmere или Ivy Bridge, то становится понятно, что совсем без улучшений Intel обойтись не могла. И поэтому слова представителей микропроцессорного гиганта о том, что удельная производительность Broadwell по сравнению с Haswell должна увеличиться примерно на 5%, особого удивления не вызывают. Это примерно такой же прогресс, как мы видели в момент перехода с Sandy Bridge на Ivy Bridge, и при этом Intel явно даёт понять, что потенциально Broadwell могут работать на тактовых частотах как минимум не меньших, чем Haswell.
Сделанные в Broadwell улучшения, конечно, фундаментального характера не имеют. В основном, инженеры поработали над внутренними буферами и увеличили их вместимость, что в конечном итоге позволяет снизить простои исполнительного конвейера. Например, большее окно планировщика даёт возможность реализовать в Broadwell внеочередное исполнение инструкций ещё эффективнее, чем в Haswell, а увеличенный в полтора раза буфер ассоциативной трансляции (L2 TLB) снижает простои при преобразовании адресов. При этом вся схема трансляции приобрела второй обработчик промахов, что позволяет обрабатывать две операции преобразования адресов параллельно. Кроме того, в очередной раз улучшились и алгоритмы предсказания переходов. В Broadwell внимание было уделено правильному предсказанию адресов, что должно положительно сказаться на обработке предстоящих сложных операций ветвления.
Впрочем, одними только изменениями входной части исполнительного конвейера дело не ограничивается. Кое-что сделано и для повышения чистой математической производительности, а конкретно, инженеры Intel полностью переделали схему обработки операций умножения и деления с плавающей точкой. Благодаря этому темп исполнения умножений возрос с пяти до трёх тактов, а деления ускорились за счёт исполнения на широком 10-битном делителе. В дополнение к этому оптимизации получили и векторные gather-инструкции из набора AVX2. Представители Intel говорят и об улучшении в Broadwell встроенной криптографии, но мы пока не можем однозначно интерпретировать, о чём в действительности идёт речь.
Очевидно, что Intel могла внедрить в Broadwell и более внушительный набор улучшений,  если бы не явный прицел компании на снижение энергопотребления. Теперь на пути всех микроархитектурных оптимизаций поставлен строгий фильтр: какое-то улучшение внедряется только в том случае, если при росте производительности на 2% оно увеличивает энергопотребление не более чем на 1%. Ранее подобное правило было сформулировано с соотношением 1:1, но теперь оно стало вдвое более строгим. А это значит, что обещанный Intel 5-% рост производительности процессорных ядер Broadwell опирается не более чем на 2,5-% увеличение удельного энергопотребления.
Зато вот графика в Core M совсем не такая, как в Haswell. Intel HD Graphics 5300 поддерживает DirectX 11.2, OpenGL 4.2 и экраны с 4К-разрешением. На снимке процессора видно, что графический адаптер теперь занимает больше половины от всей площади кристалла – этим в свое время хвасталась, да и продолжает хвастаться AMD. Новая графика обеспечивает прирост производительности в современных играх порядка 40% и примерно 80-% ускорение в кодировании видео.
Более приятная новость для пользователей планшетов и ультратонких ноутбуков состоит в том, что Intel наконец-то удалось снизить энергопотребление графики в тех задачах, где она используется сравнительно активно. Например, в прошлом поколении сокращение времени работы от батарей при просмотре видео было весьма ощутимым – теперь это исправили.
Встроенный аудиокодек позволяет решить сразу две проблемы. Во-первых, его появление практически закрывает вопрос с поиском драйверов: Intel славится поддержкой практически любых операционных систем. Во-вторых, при воспроизведении видео со звуком или просто музыки снижается нагрузка на процессорные ядра – часть переносится на экономичный аудиокодек, что позволяет экономить заряд батареи. Что касается беспроводных соединений, то, помимо уже привычного 802.11ac (модуль Intel Wireless AC-7265), заявлена поддержка технологии Intel Wireless Display 5.0 и WiGIG – с помощью последнего будет реализована работа с беспроводными док-станциями.
В целом процессоры Intel Core M предназначены для широкого спектра устройств – от обычных тонких ноутбуков до тех самых трансформеров «два в одном» и просто мощных планшетов. То есть это сравнительно низкопроизводительные и очень низковаттные процессоры. Номинальная, «гарантированная» частота виденных нами экземпляров не переваливала за отметку в 1 ГГц. Чипы поддерживают динамический разгон (Turbo Boost) до существенно более высоких частот. Но, как мы знаем, конкретные значения, до которых процессор и графическое ядро смогут разогнаться, будут зависеть от того, насколько эффективно производителю данного конкретного устройства удалось решить проблему отвода тепла (напомним, решать ее придется без использования вентиляторов).
К созданию устройств на Intel Core M уже приступили все крупнейшие партнеры Intel – Acer, ASUS, Dell, HP и Lenovo. Более того, на IFA 2014 ASUS уже продемонстрировала ноутбук Zenbook UX305 на базе Intel Core M 5Y10, а Lenovo показала упомянутый выше ThinkPad Helix 2. И то ли еще будет.
Заключение

В целом в плане железа индустрия мобильных ПК за последние несколько лет совершила потрясающий скачок. Кто мог подумать, что современные процессоры для такого рода устройств будут потреблять столько же, сколько чипы телефонов? Да и производители конечных устройств научились здорово оптимизировать использование пространства в своих мобильных компьютерах, ставить в них качественные дисплеи, не менее качественные клавиатуры и тачпады, а также – порой вполне удачно – экспериментировать с форм-факторами. В результате сдерживающей прогресс силой на данный момент является софт – по сути, для всего этого железного великолепия операционные системы в глобальном масштабе делает лишь один разработчик, и далеко не всем нравится то, что он предлагает.
В общем, следующий ход – за производителями софта. Им предстоит научиться использовать то, что уже реализовали производители железа, и тогда, наверное, взаимодействие человека и компьютера ощутимо изменится – в лучшую сторону. Intel в какой-то мере тоже является производителем ПО и прилагает некоторые усилия к тому, чтобы сдвинуть дело с мертвой точки. Но усилиями одной только Intel здесь не обойтись.
Источник: 3dnews.ru/8.10.2014


Прочее в России


Владимир Михеев об электронной войне


Руководитель департамента по работе с госзаказчиками КРЭТ рассказал о современных технологиях радиоэлектронной борьбы.
Руководитель департамента по работе с госзаказчиками КРЭТ Владимир Михеев в интервью радиостанции «Эхо Москвы» рассказал о новых направлениях в работе концерна и современных технологиях радиоэлектронной борьбы.
О работе на опережение

В концерне по каждому направлению радиоэлектронной борьбы в военно-промышленном комплексе есть головные научно-исследовательские институты. По некоторым направлениям их даже несколько. Например, по авиационной части – это КНИРТИ – Калужский радиотехнический институт, самарский ВНИИ «Экран»; по наземным средствам – это ВНИИ «Градиент» (Ростов-на-Дону); по морским или корабельным средствам – Таганрогский научно-исследовательский институт связи. Это серьезные, практические, почти академические институты, которые занимаются исследованиями и прогнозированием, в том числе анализом вероятного противника.
Всю жизнь, с 1905 г., нам приходилось иметь дело с самым сложным электронным противником. Мы понимали, что США, ведущие европейские державы, Израиль и еще ряд стран серьезно занимаются своей электроникой. И мы соответствующим образом готовили свой ответ в виде радиоэлектронной борьбы. Мы изучали противника, мы записывали его сигналы. Иногда нам доставалась их техника, тогда мы ее разбирали до винтика, как я всегда рассказываю, раскладывали в ряд Фурье и на ней тренировались.
Сегодня нельзя однозначно сказать, кто больше преуспел. Есть направления, по которым мы ориентируемся на других, смотрим, следим, пользуемся их опытом. Но есть направления, по которым они учатся у нас – это взаимодополняемый процесс.
О современных системах РЭБ

Сам термин «радиоэлектронная борьба» делится на две составляющие. Первая составляющая – это радиоэлектронное воздействие помехами на РС противника, а вторая – это защита своих РЭБ, то есть мы принимаем целый комплекс мер в этой области.
На сегодняшний день один из самых лучших производителей РЭБ в Российской Федерации – это КРЭТ. Концерн специализируется на всей бортовой электронике и делает авиационные, корабельные и наземные средства РЭБ.
В концерне есть демонстрационный зал, иногда я туда привожу гостей и показываю некоторую современную технику и ретроспективу.  Я показываю, что современное средство у нас сейчас умещается в кейсе, а раньше оно было на четырехосном КАМАЗе, а позавчера это было десять суперМАЗов и прицепов.
Наш концерн производит в том числе комплексы, которые находятся на многотонных КАМАЗах, есть 40-тонные тягачи, на которых стоят сверхмощные комплексы РЭБ, имеющие колоссальные дальности.
Борт самолета набит электроникой, там есть и средства  связи, и средства РЭБ, и средства управления. Сегодня любое цифровое устройство может выполнять различные функции. Любой блок в зависимости от того, как мы его запрограммируем, будет вести пассивную разведку или пассивную локацию, он может быть постановщиком помех. То есть функции его расширяются.
Если надо, то борт может использовать энергетический ресурс основной радиолокационной станции, то есть она будет помогать подавлять РЭБ противника. И то же самое с зенитным ракетным комплексом: современные активные фазированные решетки могут заниматься передачей информации, работать как средство связи и ставить помехи.
Работа систем РЭБ в боевых условиях

На сегодняшний день современные средства РЭБ имеют достаточно широкое воздействие на все рецепторы танка или самолета и постепенно становятся средствами ведения боя. Сейчас уже существует такой термин, как радиоэлектронный удар или радиоэлектронная операция. Сейчас можно повоевать в эфире.
Российские комплексы РЭБ традиционно пользовались широким спросом в ряде стран. И это не только страны Азии и Африки, но и Европы. У нас очень серьезные достижения, и многие европейские страны проявляют интерес и взаимодействуют с нами.
Например, в арабо-израильской войне применялся весь комплекс радиоэлектронных помех. Многие страны, которые закупают у нас сейчас технику, активно используют у себя во внутренней обороне, во время проведения широкомасштабных учений. И она показывает очень приличные результаты.
О компонентной базе

Область РЭБ – наиболее закрытая область электроники, и все приборы, которые используются, находятся на острие самых последних разработок.  Многие из них просто не поставляются на внешний рынок.
Основная часть компонентов, которые мы применяем в комплексах РЭБ, – это отечественные разработки. Могу сказать, что очень многие российские предприятия радиоэлектронной промышленности загружены именно нашими заказами. Мы являемся и разработчиками, и заказчиками самых передовых приборов.
Считаю глубоким заблуждением мысль о том, что мы отстаем в микроэлектронике. У нас есть и системные институты, и разработчики, и серийные заводы, всего в концерн входят более 128 предприятий российского ОПК, это огромное количество. Если бы вы побывали на одном из наших заводов, которые расположены по всей территории страны, то такого мнения не было бы. В чистых экранированных комнатах, безэховых камерах создается самая современная аппаратура. Мы также развиваем и радиофотонику.
О защите систем управления

Как отмечают военные эксперты, зависимость вооруженных сил США от электронных систем управления очень велика, как и уязвимость этих систем. Если говорить о наших реалиях, можно вспомнить такой пример, который всегда приводит наш генконструктор систем и средств РЭБ Юрий Маевский: вечером кассиру 3 руб. забрось в кассу, и он будет всю ночь пересчитывать эти деньги, потому что не сходится что-то.
Так же и с современными системами: чем сложнее система, тем легче в нее попасть и внести в ее строгую иерархию какую-то неоднозначность, и система будет заниматься не своей по предназначению функцией, а будет искать ошибку, которая в нее вкралась. Современные системы затрачивают на это иногда большую часть ресурсов. Это отдельная проблема, которой мы занимаемся. Есть такая фраза: чем сложнее система, тем легче ее вывести из строя.
О кадровом вопросе

По большому счету, эта проблема есть везде. В одно время все хотели быть менеджерами, банкирами, юристами, но я думаю, что эта ниша уже заполнена, по большому счету. И я еще раз хочу ответить тем оппонентам, которые считают, что у нас ничего нет: вы вот придите и посмотрите, и вы будете приятно удивлены современным уровнем российской радиоэлектроники. На сегодняшний день на наших серийных заводах и в НИИ уровень молодежи достаточно большой. Практически все наши головные НИИ имеют свои группы подготовки в университетах, серьезных учебных заведениях, где мы целенаправленно готовим для себя молодых талантливых специалистов, которые приходят и на самом деле творят чудеса на наших предприятиях.
О системах будущего

Говоря о технологии стелс, следует подчеркнуть, что мы очень активно работаем в этом направлении. Многие наши самолеты и перспективные самолеты тоже строятся по технологии стелс. А мы для них делаем авиационные комплексы РЭБ. Если самолет выполнен по технологии  стелс, наш комплекс для него будет менее мощный, но более «умный».
Мы стоим на пороге определенного технологического рывка, на пороге электронного мира. Если мы утверждаем, что XIX век был век пара, XX – век моторов и покорения космоса, так вот XXI – век бурного развития электроники. Источник: «Ростехнологии»
www.russianelectronics.ru/engineer-r/32149/doc/70235/13.10.2014


Российские «умные» мини-спутники выйдут на орбиту в 2016 году


В проекте по запуску «умных» мини-спутников участвуют Томский государственный университет и Институт физики прочности материаловедения РАН, Московский авиационный институт, Самарский аэрокосмический университет, а также ряд предприятий космической отрасли.
Первая группировка «умных» мини-спутников, которые будут выполнять различные задачи и помогать космонавтам, должна выйти на орбиту в 2016 г., сообщил журналистам в среду замгубернатора Томской области по научно-образовательному комплексу и инновационной политике Михаил Сонькин на форуме «Открытые инновации» в Москве.
Ранее сообщалось, что российские ученые вместе со специалистами предприятий космической отрасли намерены создать мини-спутники, которые впервые в мире смогут объединяться в группировки, самообучаться и даже ремонтировать друг друга, не покидая орбиты.
«Дан старт подписанию генерального соглашения о создании консорциума для выполнения проектов в сфере создания группировок миниатюрных спутников. Координаторами проекта выступят Томский политехнический университет и Научно-технологический центр «Космонит» РКС… Уже сформированы планы по запуску – это 2016 г.», – рассказал Сонькин.
Он уточнил, что задачей консорциума станет разработка новых материалов для космической отрасли, создание программных продуктов для управления группировкой и взаимодействия мини-спутников между собой.
«Также это решение прикладных задач, в первую очередь, связанных с организацией связи в труднодоступных местах и резервной связи в заданных точках, например, Мирового океана», – отметил вице-губернатор.
В проекте участвуют также Томский государственный университет и Институт физики прочности материаловедения РАН, Московский авиационный институт, Самарский аэрокосмический университет и предприятия космической отрасли: РКК «Энергия», «ИСС имени Решетнева» и другие. По словам Сонькина, ожидается, что в ближайшее время руководители этих организаций подпишут соглашение о создании консорциума и начнут совместную работу. Источник: РИА Новости
www.russianelectronics.ru/engineer-r/news/russianmarket/doc/70513/16.10.2014


Разное


Американцы украли российский шаттл


Громкий скандал разгорается в космической отрасли. Глава исследовательско-аналитического центра Объединенной ракетно-космической корпорации (ОРКК) Дмитрий Пайсон уличил американскую компанию Sierra Nevada в копировании российского космического аппарата "Бор-4" при создании мини-шаттла для NASA. Беспилотный орбитальный ракетоплан ("Бор-4") использовался в проекте "Буран".
Американская компания Sierra Nevada была одним из участников конкурса по выбору подрядчика для организации коммерческой доставки астронавтов на МКС. Эта компания представила свою разработку на 65-м Международном астронавтическом конгрессе в Торонто. Как отметил участвовавший в конгрессе Дмитрий Пайсон, большой интерес вызывали проекты фирм, специализирующихся на коммерческой пилотируемой космонавтике – Boeing и SpaceX. При этом он подчеркнул, что "некоторые наработки советских конструкторов легли в основу проекта космического самолета Dream Chaser компании Sierra Nevada".
Победителями конкурса NASA стали Boeing и Space-X, которым американское космическое агентство выделит 4,2 миллиарда и 2,6 миллиарда долларов соответственно на создание нового космического корабля. Предполагается, что такой корабль отправится в пробный пилотируемый полет к МКС в 2017 году, сообщает ТАСС.
Между тем в конце сентября SierraNevada объявила, что оспорит результаты конкурса NASA. В фирме считают, что она может потратить на новый космический корабль на 900 миллионов долларов меньше, чем конкуренты.
Отметим, что пока космонавты добираются до станции на российских "Союзах", причем NASA, по данным американских СМИ, платит Роскосмосу около 70 миллионов долларов за место на борту. Источник: dni.ru
http://newsland.com/news/detail/id/1445174/16.10.2014

 


Консультации

Отдел перспективного маркетинга:
Тел.                       + 375 17 398 1054
Email: markov@bms.by
ICQ: 623636020
Бюро рекламы научно-технического отдела
Тел.                       + 375 17 212 3230
Факс:                     + 375 17 398 2181


Home Map

Back

Contact

Engl Russ

© Reseach & Design Center 2014